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Abstract. Finitely convergent algorithms for solving rank two and three bilinear programming 
problems are proposed. A rank k bilinear programming problem is a nonconvex quadratic program- 
ming problem with the following structure: 

minimize c& + df,y + i c;x-d;y(xEX, yEY , 
j=l I 

where XC R”’ and Y C RnZ are non-empty and bounded polytopes. We show that a variant of 
parametric simplex algorithm can solve large scale rank two bilinear programming problems efficient- 
ly. Also, we show that a cutting-cake algorithm, a more elaborate variant of parametric simplex 
algorithm can solve medium scale rank three problems. 

Key words. Bilinear programming, parametric simplex algorithm, global minimization, nonconvex 
quadratic programming problem. 

1. Introduction 

In this paper, we will propose rigorous and efficient algorithms for solving rank 
two and rank three bilinear programming problems. A bilinear programming 
problem (BLP) is a special type of nonconvex quadratic programming problem: 

minimize f(x, y) = chx + dby + x’Cy 
subjectto A,x=b,, x20, (1-l) 

A,y=b,, ~20, 

where cO E R”‘, d, E R”: CE R”‘““2, Ai E Rmixni, bj E R”‘, (i = 1,2). Let us 
denote 

X={xER”‘~A,x=b,,x~O}, (1.2) 

Y={yER”Z~Azy=b2,y~0}. (1.3) 
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We will assume throughout this paper that 

X and y are nonempty and bounded. (1.4) 

When rank C is k, (1.1) will be called a rank k bilinear programming problem. It 
is shown in [9] that a rank k bilinear programming problem can be put into its 
canonical form: 

k 

minimize f(x, y) = c;x + d’,y + c c;x . dfy 
j=l (l-5) 

subject to x E X , y E Y , 

where both {ci, c2, . . . , ck} and {d,, d,, . . . , dk} are linearly independent sets 
of vectors. 

BLP’s are related to several important classes of nonconvex minimization 
programming problems [5,6]. First of all, a concave quadratic programming 
problem: 

minimize qfz + i zfQz 

subject to Az=b, ~30, 
(1.6) 

where Q is a symmetric negative semi-definite matrix, is equivalent to a bilinear 
programming problem: 

minimize qfx + qfy + x’Qy 
subjectto Ax=b, x20, (1.7) 

Ay=b, yz=O 

as stated in the following theorem [8]: 

THEOREM 1.1. Let (x*, y*j be an optimal solution of(l.7). Then both x* and 
y* are optimal solution of (1.6). Conversely, if z* is an optimal solution of (1.6), 
then (x, y) = (z*, z*) is an optimal solution of (1.7). 

It is proved in [6] that the feasibility problem of O-l integer programming 
problems can be reformulated as concave quadratic programming problems (1.5)) 
which implies that O-l integer linear programming problems can be converted to 
a sequence of bilinear programming problems. 

Second important class of problems are linear min-max problems [2]: 

m~~m~n{pk+qry[F1~+F,y=f, x30, y30). (l-8) 

By taking the partial dual of (1.1) with respect to y, we obtain a linear min-max 
problem: 

rn;lnrnuax{c~~+b:uIA,x=b,, A$-Cfxadd,, x20). (1.9) 

Conversely, a linear min-max problem can be converted to a bilinear program- 
ming problem. 
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It is shown in [6,17] that a number of important real world problems can be 
formulated as bilinear programming problems. 

Motivated by theoretical and practical importance, many researchers tried to 
construct efficient algorithms for bilinear programming problems. Among them 
are cutting plane algorithms [7,12,13,15,18], successive under-estimation 
methods [3], branch and bound algorithms [4,14,15,16]. All of these algorithms 
exploit the important property of BLP’s stated in the following theorem 173. 

THEOREM 1.2. Under assumption (1.4), a bilinear programming problem has 
an optimal solution (x*, y*) such that x* and y* are extreme points of X and Y, 
respectively. 

Unfortunately, however some of these algorithms, though reasonably efficient, 
may not be finitely convergent. Finitely convergent algorithms, on the other hand 
are usually inefficient. In particular, some finite algorithms are not more efficient 
than the total enumeration of extreme points of X and Y. 

Recently, the authors [9] proposed a finite and efficient algorithm for obtaining 
a global minimum of rank two bilinear programming problems. This algorithm 
uses a variant of parametric simplex method. According to our numerical 
experiments [9], totally dense problems of the size up to (m, , m2, n, , n,) = 
(100,100,180,180) can be solved within 10 minutes on SUN4/280 workstation. 
Computation time would have been less if the problems are sparse. 

In Section 2, we will discuss some improvements on the rank two bilinear 
programming algorithm proposed in [9]. It turns out that this improvement is 
quite substantial. In fact, we can now solve general rank two bilinear program- 
ming problems in much the same computational time as that needed to solve 
three linear programs with the same constraints. 

In Section 3, we will propose a “cutting cake algorithm” for solving rank three 
problems. This algorithm partitions the polytope of the three dimensional param- 
eter space into pieces of cheese cake shaped subregions. The algorithm extensive- 
ly uses parametric linear programming technique. It is exact, finite and is 
demonstrated to be reasonably efficient. 

Finally, in Section 4, we will discuss future directions of research. 

2. A Fast Algorithm for General Rank Two Bilinear Programs 

2.1. PARAMETRIC REPRESENTATION 

Let us consider the general rank two bilinear programming problem: 

minimize G,(x, y) = c$ + df,y + c;x - d;y + c;x - d;y 
subject to xE X, y E Y, 

in which both { cO, cl, .cZ} and {d,, d,, d,} are linearly independent. 

(2.1) 
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Remark: If c0 is dependent on cr, c2 or d, is dependent on d,, d,, then the 
problem can be solved by a single parameter simplex algorithm proposed in [9]. 
The algorithm is so efficient that further improvement appears impossible. 

To solve (2.1), we first introduce a pair of auxiliary variables: 

5 = c;x ) 
rl = d:y , 

and put 12.1) into its parametric representation: 

where 

tmin = min{ cix 1 A ,x = b, , x 3 0) , 
5 max =max{cix 1 A,x= b, , xz=O}, 
T,in = mint&y 1-4,~ = b, , Y 2 0) , 
rl max =max{&y(A,y=b,, y”O}. 

Let 

lJ = {( 5, S> I !tfmin s 5 s 5max ) %jn c rl d %axl . 
Let us define a subproblem: 

minimize g&, y; 5, rl) = cbx + db + 5d:y + v:x 
P(.$,q) subjectto xEX, yEY, 

c;x = .$ , d;y = r] , 
where (5,~) E II. Let 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

h( 5,q) = min{ g2(x, y; 5,~) I x E X, y E Y, 4x = t, 4Y = 7) . 
To solve (2.3), it sufficies to find the global minimum point (<*, 7”) of h( 5,q) 
over ( 5, q) E TI. The global minimum (x*, y *) of (2.1) can be obtained by solving 
PCs*, 77”). 

Let us proceed to the algorithm for obtaining ( t*, n*). 

2.2. PARTITIONING OF THE TWO DIMENSIONAL PARAMETER SPACE 

The crucial observation is that P((, n) can be decomposed into two subproblems: 

PA 5, r)) 
minimize (co + WJX 
subject to x E X , c:x = 5 , (2.7) 

PA 5,77) 
minimize (4, + 54)‘y 
subject to y E Y , dfzy = q , (2.8) 

which can be solved separately. 
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Let us define two functions on II: 

h,( 5,~) = min{(c, + rlc,)‘x I x E X, 4 = 6-1 > 

~,(5~ 77) = min{(d, + 54)‘~ I Y E Y, &Y = 771 . 

Then 

h(5,r7)=hx(5,77)+hy(5,rl). 

Let (&, Q) E II and consider a linear program: 

minimize (cO + ~J~CJX 
PX(&,,~,J subject to A,x=b,, x20, 

c;x = 5, . 
(2.9) 

Let B be an optimal basis of PX( &,, r],) and N be the associated nonbasic 
matrix. 

Then we have 

where 
CfON = CiN - c&B-lN, 
-t CZN = c kv -c&B-IN. 

Also, B remains optimal for P-J 5,~) as long as 

(2.10) 

(2.11) 

from which we obtain a rectangle (Figure 1) 

R(i,5;11,11)‘{(1,17)lI~~~~, p77+}. 

B is optimal for PX( e,q) for all ( t,qj E R( 5, 5; 7, +). Also note that h,( 5,~) 
is a bilinear function of (5,~) on R( 5, 5; 7, +)7 Wh& (5, Q) reaches the edge of 
the rectangle R( 5, 5; 7, f), say ( 5, $,), then an alternative optimal basis will be 
generated by apfilying a dual simplex pivot. Also when (&,, n) reaches (&-,, +j) 
then an alternative basis will be generated by applying a primal simplex pivot. 
Thus we obtain a partition of the rectangle II into a finite number of subrectangles 
(See Figure 2) by applying a sequence of primal and/or dual simplex pivots by 
barring degeneracy appropriately (For details, see [lo] where we developed a 
criss-cross method to get around degeneracy.). 

Let %JX be the collection of subrectangles covering II. 
Analogously, we can obtain another collection CBY of subrectangles covering II 

by applying the same procedure to PY( 5,~). 
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Fig. 2. Partition of the rectangle II. 

Let us now describe the outline of the procedure for searching the collection 
CBx of subrectangles. 

Procedure RectungZe( Px) 
Input: A parametric linear programming problem Px( 5,q) 

Output: The collection 9Q of subrectangles 
Step 1 (Initialization) 

solve a linear programming problem Px( t&,, T/~~,); 
let B be an optimal basis of Px( cmi,, rlmin); 
set 5 := &,; .$:= &,,; q := qmin; 9 := 0; 3, := 0; 
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Step 2 
iterate: 

while 5 < 8 
begin 
calculate a pair of intervals [ 5, 51, [v, ;i], and a new basis B 

such that B is an optimal basis of the problem PX( 5, n); 

3x := 2x u z-q; r; !, 9; 

if < < qmax then 

g := 9 U {(p,(5,;i), B, 8>; 

(Comment: B is also an optimal basis of PX( 5, +j)) 
(:= 5; 
end 

ifS#ki then 
begin 

got0 iterate; 
end 

else (Comment: 9 = $3) 
terminate 0 

2.3. CALCULATIONS OF THE GLOBAL MINIMUM 

Let us next describe how to calculate the global minimum of h( c,n) over 
(s,v)En. 

Let H, and V, be the set of horizontal and perpendicular line segments 
associated with the partition 9&. Also let HY and V, be the set of horizontal and 
vertical lines associated with 9Q. Further, let S&, be the partition of II generated 
by the union H, U H, and V, U V,. (See Figure 3.) 

THEOREM 2.1. The global minimum of h( .$, 7) over (6, q) E II is attained at 
either one of the vertices of the rectangle contained in 9&,. 

proof. h,( 5, -d and 44 5,rl) are both bilinear function of ( 5,~). Theorem 1.2 
asserts that the global minimum of h( 5,~) over R is attained at either one of its 
vertices. Cl 

Let us note that 9Q, may consist of a huge number of subrectangles even if the 
configurations of .9& and 9ZY are relatively simple. However, we can ignore most 
of the vertices of 9 XY by exploiting the special structure of the problem. 
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Fig. 3. 

DEFINITION. A function g( 5,~) is,a convex-concave (concave-convex) function 
if 
(i) g( 5,~) is a convex (concave) function of 5 for fixed value of 77. 
(ii) g( 5,~) is a concave (convex) function of q for fixed value of 5. 

THEOREM 2.2. h,( 5, n) is a convex-concave function on II. Also hy( 5,~) is a 
concave-convex function on II. 

Proof. Follows from the standard results of linear programming. See, e.g. [l] 
0 

THEOREM 2.3. Let V+ be the set of vertices which are intersections of linear 
segments of V, and H,. Then only the vetices u+ E V’ can be a local minimum of 

h( 6, ‘I) over (5,4 E II. 
Proof. Since h,( 5,~) is a concave function of 7, any vertex lying on the line 

segment H, , not on the H,, cannot be a local minimum of h( 5, n). Neither can 
any vertex lying on the line segment V, be a local minimum. 0 

For example, three vertices out of the four newly generated vertices of Figure 3 
can be ignored throughout our effort to locate the global minimum of h( 5,~). 
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From Theorem 2.3, searching only the vertices u+ E V+, suffices to obtain a 
global minimum point ( [*, v*). By executing the procedure Rectangle twice, we 
can obtain the set of the line segments V,, H,. Also the intersection of V, and 
H, can be calculated efficiently by using plane sweep method [ll]. 

2.4. COMPUTATIONAL EXPERIMENTS 

Let us show the results of computational experiments. We solved the following 
rank two bilinear programming problems: 

minimize c;x + dby + c;x . d;y + c;x * d’,y 
subject to A,x d b, , x >O, 

A,yGb,, ~20, 

where n, y E R”, A,, A, E R”““, cl, c2, d,, d,, c,,, d,E R”, b,, b,E R”. 
The program was coded in C language and tested on a SUN4/280S computer. 

All elements of A r, A,, b, , b, are randomly generated, whose ranges are [0, 1001. 
Also ci , c2, d, , d,, cO, d, are randomly generated, whose ranges are [-50,501. 
Ten problems were solved for each size of m, it. In Table 11.1, Stage 1 corre- 
sponds to the total time of Step1 of the procedure Rectangle, i.e. the time 
required to solve two linear programming problems Px( 5,~) and Py( 5,~). Stage 
2 corresponds to Step 2 of the procedure Rectangle, i.e. the time spent to partition 
II into its subrectangles .G%$ and 5&, while Stage 3 stands for the time required to 
calculate the intersections of V, and Hy. 

We see from this table that the total amount of computation time is about three 
times more than that of Stage 1 for this class of problems, regardless of its size. 
This is a remarkable improvement over the results reported in [9], where the 
amount of computation grew exponentially as a function of n and m. Considering 
the magnitude of standard deviation, we may as well claim that rank two bilinear 
problems can now be solved in not more than five times as much computation 
time as that needed to solve the associated linear programs. 

3. Three Parameter Simplex Algorithm for Rank Three 
Bilinear Problems 

3.1. PARAMETRIC REPRESENTATION OF THE PROBLEM 

In this section, we will consider a special class of rank three bilinear programming 
problem in which d, = 0, i.e., 

minimize G3(x, y) = c;x + c;x . d;y + c;x - d;y + c&e djy 
subject to x E X , YEY, (3-l) 

where, as before, we assume that X and Y are nonempty and bounded polyhedral 
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convex sets. By definition, {cl, c2, 3 c } and {d,, d,, d3} are linearly independent 
sets of vectors. Also, let us assume that c,, is linearly independent of {cl, c2, q}. 

Let us introduce three auxiliary variables 

i 

5 = c;x ) 
77 = d:y , (3.2) 
5 = c:x ) 

and consider parametric representation of (3.1) : 

minimize g,(x, Y; 5979 cc> = c;x + efd;y + T&X + ld:y 

subject to A,x = b, , A,y = b, , 
c;x = c$ , d;y = 77 , 
c;x=4, xso, yao, 
(t, !C>ETJ2 T %indrls%nax Y 

where 

Tmin = mid&y 1 Y E Y> , 

77 max =m={diyIyEYl, 

and II, is a collection of (5, l) such that 

X(&[)={x/Alx=bl, c;x=.& c;x=[, x20) 

is nonempty. 
Let 

3.2. PARTITION OF THE THREE DIMENSIONAL PARAMETER SPACE 

Let us define a subproblem: 

minimize g,(x, y; 5, q, 5) = cbx + td\y + qcix + ldjy 
subjectto AIx=bl, A,y=b,, 

P(5,% 5) c;x = s$ , d;y = 7 , 
c;x= 5, 
x20, yso 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

for each (5, 7, 6) E III, and let h( 5, T,I, 4) be the minimal value of the objective 
function of P( .$,v, 6). As before, this problem can be decomposed into two 
subproblems: 

minimize c;x + qc;x 

PA59 rl? !9 
subjectto A,x=b,, xz-0, 

c;x = e$ ) (3.8) 

I c;x = 3 ) 
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minimize (d:y + bd:y 
subject to A,y = b, , y 2 0, 

d;y = 7 . 
(3.9) 

Let kdt, 77, f) and h,([, n, [) be the optimal value of PX(e, 7, l) and 
PY( c,n, l), respectively. Now let us consider PY( &,, n,,, fh) where ( &, n,,, &,) E 
III,. Note that PY( &, no, &,) is a linear program. 

Let B, be the optimal basis of the linear program (3.9), and N,, be the 
associated nonbasic matrix. Then 

and 

Gi~lN, + Y,&No 2% 0 Y 

where 
-t 
d lNo = d:,,, - d:&?% , 
-t 

d d:No 3No = - d;,oB,lNo, 

Also, B, is an optimal basis of PY( e,n, S) for all (6, n, 6) such that 

and 

Thus we obtain a region’ 

GLrl;g,+{(bL w?-ei? a5~5~wn~3 - 

in which B, remains an optimal basis of PY( 5, n, 0. 
Let S, = S(n, i; _a, ti). When (t,n, l) reaches the boundary (6, r), &), we 

obtain an adjacent optimal basis B, by a primal simplex iteration. Let S, be the 
associated subregion of II3 in which B, remains optimal. In this way, we will 
obtain a clockwise partition S,, S,, . . . , S,-, of II, by cones associated with a 
sequence of bases B,, B, , . . . , Bk-,, B, = B,, barring degeneracy appropriately. 
(See Figure 4 and [lo].) Furthermore, when ( c$, 7, 5) reaches the boundary 
(,$,+, [), we will obtain alternative basis by a dual simplex iteration and the 
region in which this basis remains optimal. 

Thus we obtain a partition Y of II, into a finite number of subregions in which 
certain base B of the matrix (2:) remains optimal. Each subregion has the shape 
like a slice of cheese-cake. (Figure 5). 

For simplicity, we split II3 into four subsets: 
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Fig. 4. An Example of a Clockwise Partition of II3 
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Assume III;+ # 0 and let us consider partitioning II:+ into subcollection Y++ of 
9’. In this case, we can reduce PY( 5, 7, [) into the two parameter problem by 
dividing the objective function of PY( 5, n, [) by 5. 

minimize diy + o&y 
Pt+(a, 7) subject to A,y = b, , y 20, (3.10) 

4Y = 17 3 

where (T E [0, a], n E [qmin, n,J. Using procedure RectungZe(P~+) presented in 
Section 2.2, two parameter region 

{(~,,‘I)I”~(Td~,71min~71~.7?man} 

can be partitioned into the collection of subrectangles. As before, each subregion 
can be expressed as follows: 

{(w)l a-~q?-l~fl~ 7 

which corresponds to 

S(77,rl;~,;a)=((5,17,5)lq~q~77,~5~S~~5}nn,. - - 

The other subsets, II-, II,‘, or II,- can be partitioned analogously. 

3.3. ALGORITHM TO OBTAIN A GLOBAL MINIMUM 

Let S be a member of a partition 9 and let B be the associated basis matrix of 
(ti). An optimal solution y*(n) of PY( 5, v, 4’) for (5, n, [) E S is given by 

and we obtain the following expression 

hy(5,?.5)=odlll+fd~g)fBL(~), (6,%5)ES. 

THEOREM 3.1. Global minimum of h( .$,v, l) over S is attained at either q = q 
or q =ij. 

Proof. hy(5,v, 5) is a linear function of n on S. Thus the minimum of 
hy( 5, n, c) over S is attained at n = n or 7.r = +j. Also, since n appears linearly in 
Px( t,n, c) only in its objective fkrction, h,( c,n, 5) is a piecewise linear 
concave function of r]. Therefore, the global minimum of h( 5, q, l) over S is 
attained at either one of its extreme points, i.e., n = n or n = <. 0 

Thus to obtain a global minimum of h( 5, n, f) over IIs, we need only consider 
the finite set of points 

y,,, = {Y*(q) I S(rl, 11; a, 4 E 91 u {Y*(r)) I S(‘l, 17; _a, 4 E a - - 
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As a result, (3.1) can be reduced to a finite sequence linear programming 
problems: 

minimize (diy . Cl + d’,y * c2 + d:y. cg + CJX 
subject to x E X , (3.11) 

where y E Y,,,. 
We solve these linear programming problems in Step 2 of procedure Rectun- 

gZe(P,) whenever a new subregion S is generated. Since these linear programming 
problems differ only in their cost vectors, the preceding optimal basic solution can 
be used as the initial feasible solution. 

3.4. COMPUTATIONAL EXPERIMENTS 

We will show the results of the numerical experiments. We solved following rank 
three bilinear programming problems: 

minimize c;x + c;x . d;y + c;x . d;y + c;x . d;y 
subject to A,x s b, , X20, 

A,ysb,, ~30, 

where x, y E R”, A,, A, E R”““, cl, c2, cg, d,, d,, d,, c,, E R”, b,, b, E R”. 
The program was again coded in C language and tested on a SUN4/280S 

computer. All elements of A,, A,, b,, b, are randomly generated, whose ranges 
are [O,lOO]. Also cr, c2, c3, d, , d,, d,, c0 are randomly generated, whose ranges 
are [-50,501. Ten problems were solved for each size of m, IZ. Table III.1 shows 
the statistics of the experiments. In this table, Stage 1 corresponds to Step 1 of 
procedure Rectangle, i.e., the procedure to solve initial linear programming 
problem P,. Stage 2 corresponds to Step 2, and including the process of solving 
linear programming problems (3.11). 

Table III.1 shows that the computation time grows exponentially as a function 
of the size of the problem. It appears, however, that the number of subregions 
grows much slower for this class of problems. 

Moreover, note that the ratio of (a) and (b) is almost constant. This is due to 
the fact that the sequence of linear programming problems (3.11) are not much 
different from the one solved in the preceding iteration. 

4. Conclusion 

We showed in this paper that solving rank two bilinear programs are not more 
difficult than solving the associated linear programming problem. 

On the other hand, solving a special class of rank three bilinear programming 
problems (problems in which c,, = 0 or d, = 0) requires 30 times more computa- 
tion times than that needed to solve the associated linear program. Though not as 
efficient as the algorithm for rank two problems, we believe that this algorithm is 
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reasonably efficient considering the intrinsic difficulty of this class of problems. 
We are now planning a more extensive numerical experiments using the problems 
with different data structure, whose results will be reported elsewhere. 

An exact parametric algorithm for general rank three problems (the problem in 
which c0 # 0, d, # 0) is expected to requires even more computation time. Thus 
to solve higher rank problems, we need to develop some approximation scheme, 
which will be discussed in detail in a subsequent paper. 

Note 
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